/* MIT License Copyright (c) 2019 Weravech Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. https://github.com/Netthaw/TOTP-MCU */ #include "sha1.h" #include #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 union _buffer { uint8_t b[BLOCK_LENGTH]; uint32_t w[BLOCK_LENGTH / 4]; } buffer; union _state { uint8_t b[HASH_LENGTH]; uint32_t w[HASH_LENGTH / 4]; } state; uint8_t bufferOffset; uint32_t byteCount; uint8_t keyBuffer[BLOCK_LENGTH]; uint8_t innerHash[HASH_LENGTH]; uint8_t sha1InitState[] = { 0x01, 0x23, 0x45, 0x67, // H0 0x89, 0xab, 0xcd, 0xef, // H1 0xfe, 0xdc, 0xba, 0x98, // H2 0x76, 0x54, 0x32, 0x10, // H3 0xf0, 0xe1, 0xd2, 0xc3 // H4 }; void init(void) { memcpy(state.b, sha1InitState, HASH_LENGTH); byteCount = 0; bufferOffset = 0; } uint32_t rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (uint32_t)(number >> (32 - bits))); } void hashBlock() { uint8_t i; uint32_t a, b, c, d, e, t; a = state.w[0]; b = state.w[1]; c = state.w[2]; d = state.w[3]; e = state.w[4]; for (i = 0; i < 80; i++) { if (i >= 16) { t = buffer.w[(i + 13) & 15] ^ buffer.w[(i + 8) & 15] ^ buffer.w[(i + 2) & 15] ^ buffer.w[i & 15]; buffer.w[i & 15] = rol32(t, 1); } if (i < 20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i < 40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i < 60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t += rol32(a, 5) + e + buffer.w[i & 15]; e = d; d = c; c = rol32(b, 30); b = a; a = t; } state.w[0] += a; state.w[1] += b; state.w[2] += c; state.w[3] += d; state.w[4] += e; } void addUncounted(uint8_t data) { buffer.b[bufferOffset ^ 3] = data; bufferOffset++; if (bufferOffset == BLOCK_LENGTH) { hashBlock(); bufferOffset = 0; } } void write(uint8_t data) { ++byteCount; addUncounted(data); return; } void writeArray(uint8_t* buffer, uint8_t size) { while (size--) { write(*buffer++); } } void pad() { // Implement SHA-1 padding (fips180-2 ��5.1.1) // Pad with 0x80 followed by 0x00 until the end of the block addUncounted(0x80); while (bufferOffset != 56) addUncounted(0x00); // Append length in the last 8 bytes addUncounted(0); // We're only using 32 bit lengths addUncounted(0); // But SHA-1 supports 64 bit lengths addUncounted(0); // So zero pad the top bits addUncounted(byteCount >> 29); // Shifting to multiply by 8 addUncounted(byteCount >> 21); // as SHA-1 supports bitstreams as well as addUncounted(byteCount >> 13); // byte. addUncounted(byteCount >> 5); addUncounted(byteCount << 3); } uint8_t* result(void) { // Pad to complete the last block pad(); // Swap byte order back uint8_t i; for (i = 0; i < 5; i++) { uint32_t a, b; a = state.w[i]; b = a << 24; b |= (a << 8) & 0x00ff0000; b |= (a >> 8) & 0x0000ff00; b |= a >> 24; state.w[i] = b; } // Return pointer to hash (20 characters) return state.b; } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c void initHmac(const uint8_t* key, uint8_t keyLength) { uint8_t i; memset(keyBuffer, 0, BLOCK_LENGTH); if (keyLength > BLOCK_LENGTH) { // Hash long keys init(); for (; keyLength--;) write(*key++); memcpy(keyBuffer, result(), HASH_LENGTH); } else { // Block length keys are used as is memcpy(keyBuffer, key, keyLength); } // Start inner hash init(); for (i = 0; i < BLOCK_LENGTH; i++) { write(keyBuffer[i] ^ HMAC_IPAD); } } uint8_t* resultHmac(void) { uint8_t i; // Complete inner hash memcpy(innerHash, result(), HASH_LENGTH); // Calculate outer hash init(); for (i = 0; i < BLOCK_LENGTH; i++) write(keyBuffer[i] ^ HMAC_OPAD); for (i = 0; i < HASH_LENGTH; i++) write(innerHash[i]); return result(); }